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Abstract: Travel time information is used as input or auxiliary data for tasks such as dynamic naviga-
tion, infrastructure planning, congestion control, and accident detection. Various data-driven Travel
Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks
in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies
that empirically compare different TTP models only use a few models with specific features. More-
over, there is a lack of research on explaining TTPs made by black-box models. Such explanations
can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature,
using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep
neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore,
we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and
interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated
and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are
the best performing models over the three data sets, and XAI methods can adequately explain how
various spatial and temporal features influence travel time.

Keywords: travel time prediction; spatio-temporal; XGBoost; LightGBM; LSTM; hybrid models;
Explainable AI; XAI; SHAP and LIME

1. Introduction

Travel time refers to the time for a vehicle to reach a destination. Precise prediction of
travel time leads to strong route planning and emergency services, preventing the delay
of public transport, decreasing fuel consumption, traffic congestion, and environmental
pollution [1–3]. The growth of online retail sales has increased the demand for express
delivery services. Short-term TTP (Travel Time Prediction) is crucial for delivering goods to
the customers, and the reliability of delivery time influences customer satisfaction, which is
one of the most critical priorities in the logistic sector [4,5].

This paper focuses on TTP in the logistic industry. TTP studies have developed a
range of different data-driven methods from statistical [6] and traditional machine learning
models [7] to advanced neural network-based models [8,9]. However, a few studies
applied and compared various data-driven TTP methods. In particular, there is a lack of
studies on the impact of spatial and temporal travel features on the accuracy of different
types of TTP models. Understanding such impact is of great significance for improving
the performance level of travel planning services [10,11]. Furthermore, while data-driven
TTP models achieve high performance, studies that focus on their explainability are absent.
Identifying the key parameters of trained models and the rationale behind them make
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sophisticated AI models understandable to human analysts. It sheds light on the inner
workings of trained models and explains individual predictions which a model makes. As
a result, it is easy to rely on the predictions since the meaningful explanations help analysts
gain trust in them.

To address the above-mentioned limitations of the TTP literature, we set the following
two research questions:

RQ1: To what extent can data-driven methods be applied for predicting travel time using
spatiotemporal features?

RQ2: To what extent can XAI methods be applied for explaining travel time predictions?

To answer RQ1, we developed ten TTP models using the learning algorithms from
three different categories of data-driven methods, namely classical machine learning, neural
networks, and hybrid models. Then, we empirically compared them using three different
real case data sets with spatiotemporal features. The experiments showed that temporal
and spatial characteristics of journeys could significantly affect travel time. Furthermore,
we observed that ensemble learning models, deep neural network models, and hybrid
models could predict travel time with reasonable accuracy (R2 of 0.83, MAE of 9.07, and
RMSE of 16.27, on average). To answer RQ2, we used Explainable AI (XAI) techniques,
which can provide human interpretable explanations for the models and their predictions
created by machine learning algorithms [12]. In particular, we applied the two widely used
XAI methods, namely SHAP [13] and LIME [14], to the TTP models. XAI methods enable
users to extract plausible answers and explanations for questions such as: why specific
characteristics (features) of travels are considered important by the model? How does each
feature influence travel time? And which feature(s) have the most significant impact on the
duration of a given trip?

The rest of the paper is organized as follows. Section 2 describes the background and
related works. In Section 3, we present three data sets and our approach to developing and
comparing different TTP models and applying XAI techniques to TTP models. Section 4
presents the results of our empirical studies. Section 5 discusses the answers to the research
questions and implications and threats to the validity of our findings. Finally, Section 6
concludes the paper and outlines future works.

2. Travel Time Prediction Methods
2.1. An Overview

Forecasting models play an important role in the development of various artificial
intelligent tasks such as fuzzy systems [15], natural language processing [16–19], and
computer vision [20,21]. Travel time prediction (TTP) is one of the essential but uncer-
tain components for logistics platforms. It is challenging and requires complex traffic or
data-driven models to learn complex patterns in various data sources such as weather,
driver profiles, road conditions, and routes taken by the drivers [1–3]. Various studies
applied many different techniques and data variables for travel time prediction. According
to [1], travel time prediction methods are classified into two main categories: model-based
methods and data-driven methods. Model-based methods build models based on traffic
variables such as vehicle speed, traffic density, and traffic flow to predict travel time and
traffic conditions over time. In contrast, data-driven methods learn hidden linear and non-
linear patterns in the travel time data. In this paper, we consider data-driven methods. The
TTP literature have studied many different learning algorithms [1–3], including traditional
regression models [22–24], ensemble learning [25,26], deep neural networks [27–32], and
hybrid models [33]. Several studies showed that the spatiotemporal information about the
travels strongly impacts travel time [10,15,34].

2.2. Related Work: Comparative Analysis of Travel Time Prediction Methods

In this section, we present the studies that empirically compare different TTP methods.
For predicting travel times for short horizons on the selected freeway corridors, Qiu and
Fan [3] compared four different machine learning algorithms, namely decision trees (DT),
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random forest (RF), extreme gradient boosting (XGBoost), and long short-term memory
neural network (LSTM). The data set is collected and processed from the Regional Inte-
grated Transportation Information System (RITIS), and the predictions are based on short
intervals (ranging from 15 to 60 min). The RF model is the best performer across different
prediction horizons. For predicting short-term travel times, Liu et al. [35] evaluated the
LSTM model for 16 settings of hyper-parameters for a single data set. The study has used
the linear models, namely linear regression, Ridge and Lasso regression, and ARIMA, as
the baseline models. The LSTM models performed better for the narrow sliding windows
and longer prediction horizons.

Goudarzi [36] applied windowed nearest neighbor, linear regression, and Conven-
tional Neural Networks (CNN) to predict travel times for short horizons. The neural
network model provides the best results. Google Maps is used to collect the data set
for travel time in this study. Another study in [11], developed a travel time prediction
method using CNN to extract essential features to improve traffic information prediction
performance. The travel time records of highways and alternative roads are collected and
used as the evaluation data set. The results show a low mean absolute error and, therefore,
an improvement in travel time prediction accuracy.

Adewale and Hadachi [37] built two neural network models for predicting travel
time of busy routes using origin-destination travel time matrix. The data set is derived
from a historical GPS data set. Experiments demonstrate that although LSTM is more
susceptible to noise as time increases, both Multi-Layer Perceptron (MLP) and Long Short
Term Model(LSTM) achieve good results.

A study in [38] utilizes a set of Monte Carlo experiments and heat maps produced
by the Layer-wise Relevance Propagation (LRP) approach for explaining the particular
predictions of neural networks in the analysis of travel options. The results indicate that
LRP helps gain trust in a trained ANN model, and analysts can employ it for general or
travel demand analysis purposes.

In [39], XGBoost is applied for predicting the freeway travel time. The relative impact
of each variable in the model is explained. Optimized modeling results of XGBoost are
assessed and compared with the gradient boosting model. The results demonstrate that
the XGBoost travel time prediction model considerably enhances the performance and
efficiency. XGBoost algorithm is also utilized to develop models for different domains
such as estimating the hydrogen solubility in hydrocarbons [40] and predicting flooding
susceptibility [41].

Compared with the existing studies, which only consider a few learning methods,
this paper empirically evaluates ten different models (two ensemble methods, three neural
networks, four hybrid models, and one linear regression model) over three different data
sets. Furthermore, we apply the XAI (Explainable Artificial Intelligence) methods to travel
time prediction models to understand and discuss the importance of various features,
prediction explainability, and model explainability. Explainable AI refers to methods and
techniques in applying artificial intelligence technology (AI) such that human experts
can understand the results of the AI-based solution. XAI methods allow human users
to comprehend and trust the results and output created by complex black-box machine
learning algorithms [12].

3. Materials and Methods

This section presents our methodology for travel time prediction and explanation,
which is depicted in Figure 1. We used the CRISP-DM methodology (Cross-Industry
Standard Process for Data Mining) [42].
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Figure 1. Methodology.

3.1. Data Understanding

This study uses three different travel time data sets. The first two data sets, namely
NextUp-1 and NextUp-2, are from a logistics software company NextUp Software (https:
//nextupsoftware.com/), which has many logistics companies as their customers who
use the software to plan and monitor orders. NextUp aims to provide more reliable
delivery time prediction of orders to optimize the internal processes of the logistics firms,
such as trip planning and resource planning, making the life of a trip planner easier
while improving customer satisfaction. The third data set, namely PeMS, was obtained
from Caltrans Performance Measurement System (https://dot.ca.gov/programs/traffic-
operations/mpr/pems-source), which includes the data from the freeway system across all
major metropolitan areas of California.

NextUp-1 and NextUp-2 data sets consist of temporal information (e.g., departure
time and scheduled order delivery time) and general information (e.g., such as order
information and driver information) about travels. Additionally. NextUp-2 data set also
includes spatial information, e.g., travel start location and delivery location. PeMS data
set contains temporal, spatial, and general information. Compared with NextUp data
sets, PeMS data set include additional information such as distance and lane numbers.
Tables 1–3 summarize the three data sets. We used the domain experts at the NextUp
company to validate its two data sets in terms of the essential travel information and the
representativeness of the data points.

Table 1. Summary of NextUp-1 Data Set.

Total Number of Trips 14,135
Average Number of Trips per Month 643
Average Number of Trips per Day 24
Average Number of Stops per Trip 10

Table 2. Summary of NextUp-1 Data Set.

Total Number of Trips 5272
Average Number of Trips per Month 195
Average Number of Trips per Day 7
Average Number of Stops per Trip 7

Table 3. Summary for PeMS Data Set.

Total Number of Travels 211,392
Average Number of Travels per Route 30,198
Average Number of Travels per Month 35,232
Average Number of Travels per Day 1155

3.2. Data Preparation

After collecting data, we performed the exploratory data analysis and cleaned the
raw data as necessary. In particular, duplicate data points and outliers were identified
and removed, and missing values were filled using interpolation. After completing the
data cleaning steps, the features were transformed and split accordingly. For example, the
timestamp features were split into multiple features using units hour, minute, day of the

https://nextupsoftware.com/
https://nextupsoftware.com/
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
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week, and month of the year. Finally, we transformed some of the attributes in the data sets
to ensure the data are in the proper format for analysis and machine learning tasks.

3.3. Model Training and Tuning

This study uses several regression algorithms from the data-driven TT prediction
literature to build TTP models that can predict travel time using spatiotemporal features.
They can be broadly categorized into ensemble learning, deep neural network, and hybrid.
We selected a linear regression, Linear SVMR (Support Vector Machine Regression), as the
baseline model. Each learning method was chosen for evaluation due to their prevalence in
TT predictive analytics [1,2,32,34,35].

• Ensemble Learning Models. Ensemble learning enhances the prediction performance
of one model by training multiple models simultaneously and combining their predic-
tive power to achieve the best performance possible [43]. Many ensemble learning
methods are available, and this study considers two widely used gradient boosting
methods [44,45]: XGBoost (eXtreme Gradient Boosting) and LightGBM (Light Gra-
dient Boosting Machine). Boosting models consist of a sequence of regression trees,
where every successive tree tries to correct the previous tree’s mistakes. Hence, in-
creasing the prediction accuracy of the overall model [22]. XGBoost applies level-wise
(horizontal) tree growth, whereas LightGBM applies leaf-wise (vertical) tree growth.
Compared with XGBOOST, LightGBM is computationally less expensive and has
better prediction accuracy [44]. We used the standard hyper-parameters of the two
learning algorithms [40,41,45]: learning_rate, colsample_bytree, n_estimators, and
max_depth for XGBoost, and learning_rate, bagging_frequency, n_estimators, and
max_dept for LightGBM.

• Deep Neural Network Models. Neural networks are one of the most popular machine
learning techniques [46]. They are represented as layered organizations of neurons
with connections to other neurons, mimicking how biological neurons signal to one
another. Neural networks can be used for travel time prediction as they can learn
non-linear relations among variables [27–32]. This study uses long short-term memory
(LSTM) and gated recurrent units (GRU) techniques of neural networks as they are
more suitable for long sequence data [35]. We use the traditional LSTM and its
extension, namely bidirectional LSTM, which combines a forward and a backward
pass of operations, enabling considering past instances and future ones.

• Hybrid Models. Following the TT prediction literature [33,35], we selected multiple
hybrid models by combining one deep learning model and one ensemble learning
model in combination with a linear model for final prediction. Figure 2 shows the
architecture of the hybrid model used. In this architecture, two different types of
machine learning models are combined, and then the output of those two models is
passed through a linear regression model to get the final result. In this study, four
hybrid models are considered: a GRU model in combination with LightGBM, a GRU
model in combination with XGBoost, an LSTM model in combination with LightGBM,
and an LSTM model in combination with XGBoost.

• Linear SVMR. Support vector machine regression (SVMR) is based on statistical
learning theory and can improve the ability of generalization by seeking the minimum
structural risk [47]. We use the Linear SVMR model as the baseline since several TTP
prediction studies use linear regression models as baselines [35,36].

We tuned the models using a grid search on the models’ hyperparameters through a
k-folds cross-validation. Grid search is an exhaustive search algorithm through a manually-
specified subset of parameters, while k-folds cross-validation is a widely used validation
method that ensures that every observation from the data set has the chance of appearing
in the training and test set [48]. We used 10-folds to partition the data randomly into ten
folds of equal size. A single fold is used as the test set, while the remaining ones are used
as the training set. The process was repeated ten times, using a different fold as the test
set. Then, the model performance was reported using the mean achieved over the ten runs.
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We could not use this strategy for deep natural networks and hybrid models as it was
computationally expensive. Therefore, we manually calibrated the regression models, and
we applied hold-out validation [48]. We split the data set into three sets using the ratio of
3:1:1 (60% training, 20% validation, and 20% test), which is a commonly used data partition
rule in machine learning model selection tasks [49].

Linear Regression

XGBoost ModelGRU Model

Travel Time Prediction

Figure 2. Architecture of Hybrid Models (based on [33]).

3.4. Model Evaluation

For the evaluation of the trained models, we used the standard performance measure-
ment metrics for regression problems:

• R2 Score. It is a statistical measure that determines the proportion of variance in the
dependent variable that can be explained by one or more independent variables in
a regression model. R2 score indicates how well the trained model fits the data. The
score lies between 0 and 1, where a score of 0 means that the model does not capture
any pattern in the data, and the predictions will be random. On the other hand, if the
score is 1, the model perfectly fits the data and generalizes very well. R2 formula is:

R2 = 1− RSS
TSS

where, RSS is the sum of squares of the residual errors and TSS is the total sum of the
errors.

• RMSE. Root mean square error or deviation is a measurement of the difference be-
tween model prediction and actual value. The deviations in predicted values from
actual values are known as residual. It is calculated over the test set and is also known
as prediction error. RMSE is always positive, and 0 is considered a perfect fit on the
data. The formula for RMSE is:

MSE =
1
N

N

∑
i=1

(Actuali − Predictedi)
2

RMSE =
2√MSE

• MAE. Mean absolute error is the mean of the absolute errors, differences between
predicted and actual values. It indicates how big of an error we can expect from the
prediction on average. MAE formula is:

MAE =
1
N

N

∑
i=1

(Actuali − Predictedi)

For validating the best performing models and comparing their performance across
data sets, we followed the recommendations by Demšar [50]. After establishing the statisti-
cal differences among the implemented machine learning models by applying the Friedman
test [51], we used the pairwise post-hoc analysis [52]. In this analysis, the average rank is
replaced by Wilcoxon signed-rank test with Holm’s alpha correction. Finally, the results
for model comparison are plotted using critical difference diagrams (CD-diagrams) for
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RMSE, MAE, and R2 for all three data sets and machine learning models [53]. In the critical
difference diagram, a thick connecting line represents similar models grouped, which
means the difference in performance between those models is insignificant.

3.5. Model Explanation

Explainable AI (XAI) refers to the techniques in artificial intelligence that help humans
understand and interpret the predictions made by ML models [12]. The explanations
provided by XAI methods aim to give trip planners and other stakeholders insights by
showing contributions of different features in travel time prediction.

There are two main types of explanations for ML models: global and local [12]. Global
explanations provide an overview of the trained model as a whole and how each input
variable contributes, either positively or negatively, to the prediction. As a result, one
can readily understand how different features in the ML model can affect the prediction.
Local explanations refer to the explanation provided for an individual prediction; they
can explain why an individual instance has been assigned a specific outcome from the
trained model.

In this study, we selected the two most popular XAI methods that are model-agnostic
and can provide local and global explanations: SHapley Additive exPlanations (SHAP) [13]
and Local Interpretable Model-agnostic Explanations (LIME) [14]. SHAP computes the
contribution of each feature for a particular prediction by using Shapley values based on
cooperative game theory. LIME tries to understand the model by perturbing the input of
data samples and understanding how predictions change. SHAP provides mathematical
guarantees for the accuracy and consistency of explanations. Several studies have compar-
atively analyzed the efficacy of LIME and SHAP methods to explain the prediction models
used by different domains, e.g., air traffic management [54] and predictive business process
analytics [55].

4. Results

This section presents the results of our empirical studies for answering the two research
questions of this paper.

4.1. RQ1: Comparison of TTP Methods

Table 4 summarizes the performance of the selected TTP methods on the three data
sets used in the study. For NextUp-1 data set, by looking at the RMSE, MAE, and R2 score
of models, we can observe that XGBoost, LightGBM, and Hybrid models have similar
performance, with XGBoost and LightGBM being the best-performing models. The hybrid
models are Hybrid-1 (XGBoost+GRU+LR), Hybrid-2 (LightGBM+GRU+LR), Hybrid-3
(XGBoost+LSTM+LR), and Hybrid-4 (LightGBM+LSTM+LR). LinearSVMR performs worst
among all the methods with significantly high RMSE and MAE scores and very low
R2. Moreover, the hybrid models do not improve the prediction accuracy significantly
compared with the individual ensemble learning models. The reason behind it can be that
the output of the ensemble method and the neural network do not have a linear relation
with the actual output. Hence, the performance remains the same as the best performing
model among the combined models.

We can observe a similar pattern of model performance for the NextUp-2 data set.
However, the differences in the performance between LinearSVMR and other models are
not as significant as the NextUp-1 data set. This behavior may be due to the differences
in features available in two data sets; NextUp-1 contains only the temporal features while
NextUp-2 includes both temporal and spatial features.

All the chosen machine learning models, including LinearSVMR, perform signifi-
cantly better for the PeMS data set, which consists of travel time data of seven freeways
having both temporal and spatial features, with 288 travel time observations each day
for six months. While LinearSVMR is still the worst-performing as RMSE and MAE are
significantly higher than other models, but R2 score is similar to other models.
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Table 4. Performance Metrics of 10 Models across Three Data Sets: Evaluation Metrics.

Data Set/Model
NextUp-1 NextUp-2 PeMS

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

XGBoost 26.51 14.57 0.8083 18.31 10.64 0.7646 0.61 0.39 0.9993
LightGBM 26.54 14.40 0.8079 18.30 10.65 0.7647 0.64 0.41 0.9992

LSTM 29.97 16.59 0.7551 24.74 13.41 0.5704 0.87 0.51 0.9987
BiLSTM 29.96 16.30 0.7553 23.16 12.72 0.6234 0.93 0.55 0.9985

GRU 29.97 16.555 0.7550 25.04 13.51 0.5597 0.80 0.49 0.9989
LinearSVMR 49.48 25.77 0.3323 26.20 14.01 0.5180 3.40 1.12 0.9797

Hybrid-1 26.53 14.49 0.8080 18.80 11.34 0.7519 0.65 0.42 0.9993
Hybrid-2 26.55 14.35 0.8078 18.45 10.87 0.7611 0.67 0.43 0.9992
Hybrid-3 26.52 14.50 0.8082 18.56 11.13 0.7580 0.65 0.42 0.9993
Hybrid-4 26.55 14.35 0.8078 18.45 10.87 0.7611 0.67 0.43 0.9992

Figure 3 depicts the result of the statistical analysis we conducted on all the considered
TTP models. We can see how on average, LightGBM and XGBoost were the best algorithms
over the three data sets. The results also show that the differences between the performance
of the predictors are not statistically significant; there is a thick line connecting the predictors
in the CD diagram.

12345678910

10.0000LinearSVR
8.3333GRU
8.0000LSTM
7.6667BiLSTM
4.8333Hybrid-4 4.8333 Hybrid-2

4.3333 Hybrid-1
3.3333 Hybrid-3
2.3333 LightGBM
1.3333 XGBoost

R2-Score

(a)

12345678910

9.6667XGBoost
8.6667LightGBM
7.6667Hybrid-3
6.6667Hybrid-1
6.3333Hybrid-2 6.0000 Hybrid-4

3.3333 BiLSTM
3.0000 LSTM
2.6667 GRU
1.0000 LinearSVR

RMSE

(b)

12345678910

8.6667LightGBM
8.3333XGBoost
7.6667Hybrid-2
7.3333Hybrid-4
6.6667Hybrid-1 6.3333 Hybrid-3

3.3333 BiLSTM
3.0000 GRU
2.6667 LSTM
1.0000 LinearSVR

MAE

(c)

Figure 3. CD Diagrams Comparing the Performance of TTP Methods across the Three Data Sets.
(a) R2. (b) RMSE. (c) MAE.

4.2. RQ2: Comparison of TTP Explanation Methods

This section evaluates the ability of the XAI techniques to provide meaningful expla-
nations for different TTP models and their outcomes. Although SHAP and LIME can be
applied to all machine learning methods as they are model-agnostic, due to brevity of space,
and to avoid repetition, we provide the explanations for two best performing models only.
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4.3. Global Explanations

The global explanations provided by SHAP can be visualized using different plots.
Figure 4 shows the popular and informative dot plots for the XGBoost model and all three
data sets. In this plot, the Y-axis indicates the TT predictors, ordered by importance; for
example, dept_hour (departure hour) is the most important feature, and quantity is the least
important feature for NextUp-1 data set. The X-axis represents the Shapley values. A
positive Shapley value means that the corresponding feature has a positive influence on
the predicted performance metric, i.e., it increases the travel time. In contrast, a negative
Shapley value indicates the associated feature has a negative impact on the predicted
value, i.e., it decreases the travel time. The color of each dot represents the value of the
corresponding feature in the data set, i.e., reddish colors represent higher values while
bluish colors denote lower values.

We can observe that temporal and spatial information about travels significantly affects
travel time. Please consider that the three data sets have similar as well as different features
(see Section 3.1). According to the plots for NextUp1 and NextUp2, late departure decreases
travel time, and early departure increases travel time. The delivery scheduled hour has the
opposite effect. As the travel distance increases, the travel time also increases (from the
plots for NextUp2 and PeMS). The Shapley values for the feature LanePts indicate that a
vehicle traveling in a faster lane will take less time and vice versa. The Shapley values for
the features travel_start_location and delivery_location) indicate that different locations can
take more or less travel time.

It is also possible to visualize the importance of each feature by summing the absolute
Shapley values of each feature across all samples. Figure 5 shows the importance of the
temporal, spatial, and general properties of travels by summing the absolute Shapley values
of each feature for all samples. We used the LSTM model for this plot. According to this
figure, temporal properties, e.g., dept_hour and scheduled_hour, and spatial properties, e.g.,
distance and LanePts, are the most important features. However, at the other extreme, some
temporal features such as dept_minute and dept_dayofweek have the least influence on travel
time. When comparing Figures 4 and 5, we can observe the differences in the importance
given to the features by different learning algorithms. For example, XGBoost considered
dept_hour is more important than driver_id, which is in contrast to LSTM’s behavior. We can
made similar observations regarding the features end_i-d, dept_hour, and distance.

(a)

Figure 4. Cont.
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(b)

(c)

Figure 4. Global Explanations with SHAP for the XGBoost Model and Data Sets NextUp-1, NextUp2,
and PeMS. (a) Summary plot Dataset-1. (b) Summary plot Dataset-2. (c) Summary plot PeMS Dataset.

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. Overall Impact of Features on Model Outcomes, Summary Plots for the LSTM model
and the Data Sets NextUp-1, NextUp2, and PeMS. (a) Summary plot Dataset-1. (b) Summary plot
Dataset-2. (c) Summary plot PeMS Dataset.

4.4. Local Explanations

We can provide the local explanations, i.e., explanations for individual predictions,
using SHAP and LIME. To visualize them with SHAP, we can employ the waterfall plot and
the force plot. With these plots, we can see each feature’s positive and negative contributions
for a single prediction, which helps us understand which features are essential and whether
a given feature affects the travel time positively or negatively.

Figure 6 shows three instances of using the waterfall plot for the TT predictions made
by the XGBoost model. The positive effect of the feature pushes the prediction higher from
the base value, as shown in red, and the negative effect pushes the prediction lower, as
shown in blue. In instance 1, we can see that the feature scheduled_hour pushes the prediction
35.73 min lower, while the feature dept_hour pushes the prediction 34.71 min higher. In
instance 3, the feature dept_hour has a negative effect of 52.56 min. The force plot in
Figure 7 provides a similar representation of the explanations but without exact numerical
contributions. Each feature pushes the prediction lower or higher depending on the
importance of that feature in that particular prediction. We can observe that scheduled_hour
and dept_hour are comparably more critical than any other features for the three arbitrary
prediction instances considered.
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(a)

(b)

(c)

Figure 6. SHAP Waterfall Plots for Explaining Three Prediction Instances. (a) Instance-1. (b) Instance-2.
(c) Instance-3.
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(a)

(b)

(c)

Figure 7. SHAP Force Plots for Explaining Three Prediction Instances. (a) Instance-1. (b) Instance-2.
(c) Instance-3.

LIME can also provide local explanations for model outputs, explaining the features’
negative and positive contributions on individual prediction samples. However, LIME
works very differently than SHAP values. LIME is inherently local as it creates a sparse
linear local model around the predicted value to explain the prediction, while SHAP
decomposes the prediction into contributions by each feature, and the SHAP values for
each feature adds up to the final prediction.

Figure 8 depicts the explanations for three travel time prediction instances of the
XGBoost model using the LIME method. The blue color shows a negative contribution to
travel time, i.e., increasing time, while the orange color shows a positive contribution. The
plot shows the essential features, relative importance/contributions, and actual values for
a given prediction. As an example, consider instance 2. The departure hour is 8 and caused
an increase in the travel time. On the other hand, the scheduled hour is 12, and reduced the
travel time.

(a)

Figure 8. Cont.
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(b)

(c)

Figure 8. LIME feature Contribution Plots for Explaining Three Prediction Instances. (a) Instance-1.
(b) Instance-2. (c) Instance-3.

5. Discussion

In this section, we first discuss the answers to the research questions of this work.
Next, we outline the potential threats to external, construct, and internal validity [56] that
may apply to our study.

5.1. Summary of Answers to Research Questions

With the first research question, we systematically assessed data-driven methods’
ability to predict travel time accurately using spatiotemporal attributes of travels. Among
the learning algorithms used, ensemble learning models, deep neural network models,
and hybrid models that combined those two types of models could predict travel time
with reasonable accuracy for all three data sets (R2 of 0.83, MAE of 9.07, and RMSE of
16.27, on average). The two ensemble models, i.e., XGBoost and LightSGM, were the best
performing models. On the other hand, the baseline model, i.e., linear SVMR, showed poor
performance for two NextUp data sets and but achieved a comparable performance for
PeMS data set, which is the largest data set we used in this study. Moreover, according to
the statistical analysis results that we conducted using the Wilcoxon-Holm post hoc test on
all the considered prediction models, there are no statistically significant differences among
the performance of the models in terms of the evaluation metrics.

Hybrid models only show little or no improvement over the individual ensemble
learning models XGBoost and LightSGM. However, they gained a noticeable improvement
over the deep neural network models LSTM, BiLSTM, and GRU (9.7% increase in R2

and 17.01% decrease in RSME). These findings are aligned with those of Ting et al. [33].
Moreover, the hybrid models are almost two times slower than LightSGM and XGBoost
models concerning training time and execution time. Similarly, as the complexity of neural
network architecture and the number of hidden layers increases, training a neural network
model becomes computationally very expensive. In this study, we trained neural networks
with a maximum of two hidden layers because of a longer training time. Thus, researchers
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and practitioners should be careful when selecting machine learning models for travel time
prediction. The traditional machine learning models via hyperparameter tuning should be
evaluated before exploring more complex models.

With the second research question, we investigated the ability of XAI methods to
provide rational explanations for the predictions made by the data-driven models. Our
findings from applying the two most popular XAI methods, i.e., SHAP and LIME, to our ten
data-driven models demonstrated that XAI methods could generate intuitive explanations
for TTPs. The global and local explanations provided by the XAI methods were plausible
and aligned with the common knowledge about the impact of the temporal and spatial
features on travel time. Thus, the XAI methods can potentially play a significant role in
travel time prediction as they can help the user understand why a particular prediction
is made. For example, the planners in a logistic company need to monitor the orders and
know why a specific package was delivered late. In such cases, explainable AI methods
can help understand the prediction outputs by explaining the contribution of each feature
for every single prediction.

5.2. Threats to Validity

The data sets from the NextUp company may not accurately represent the actual
characteristics of the travels. We partially mitigated this threat by using the domain experts
at NextUp to validate the quality of the collected data sets. We plan to further reduce this
threat by gathering more travel time data from NextUp’s customers who use the transport
management software developed by NextUp.

The features used to build the machine learning models could influence the accuracy of
the travel time predictions. We partially mitigated this threat by training the models using
the features that are considered necessary by the domain experts at NextUp. As a follow-
up study, with new data sets, we plan to evaluate the impact of the travel information
that was absent in the data sets we used, such as customer type, area type, weather, and
driver profile.

Model-based methods such as queuing theory and cell transmission model can also
be employed to build TTP models [1]. They can use traffic variables such as the speed
of a vehicle, traffic density, and traffic flow to predict travel time and traffic conditions
over time. Within the scope of our study, we only considered the data-driven methods,
which is the most popular approach according to the TTP literature [1–3]. We plan to
extend our empirical study to evaluate model-based methods over multiple data sets with
spatiotemporal features.

The explanations provided by XAI methods were plausible and aligned with the com-
mon knowledge about the impact of spatiotemporal features on travel duration. However,
a separate empirical study is necessary to generalize and validate the usefulness of XAI for
addressing the interpretability of ML-based travel time prediction models and validating
the outcomes by conducting a survey with users, which is part of our research agenda.

6. Conclusions and Future Work

In this paper, we investigated two key research issues related to travel time predic-
tion (TTP): (1) data-driven TTP methods’ ability to predict travel time by considering
the spatiotemporal characteristics of journeys, and (2) XAI’s methods’ ability to explain
decisions made by the TTP models rationally. First, we implemented various TTP meth-
ods, i.e., ensemble learning, neural networks, linear support vector machine regression
(LinearSVMR), and hybrid models that combine ensemble learning methods and neural
networks. Second, we compared these predictive models over three different data sets that
include the data points from various spatiotemporal features. Compared with the baseline
LinearSVMR model, the other models showed consistently good performance over the
three data sets (R2 of 0.83, MAE of 9.07, and RMSE of 16.27, average). Our findings indicate
that practitioners can build effective TTP models with the careful selection and application
of data-driven methods.
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Finally, we assessed the ability of SHAP and LIME XAI methods to explain the travel
time predictions made by black-box TTP models. Our results demonstrated that XAI
methods could help practitioners to understand what factors affect travel time to what
extent and how to predict travel time effectively. In particular, the explanations showed
that the temporal and spatial features and their correlations could significantly affect travel
time. The travel planners can use such explanations to diagnose delayed trips or order
deliveries. They can also identify the specific characteristics of the journeys that determine
travel time in general.

For future work, we plan to investigate the data quality issues in travel time prediction
and the importance of other features that affect travel time, such as customer type, road
type, area type, and driver profile data. Furthermore, the TTP literature includes several
promising model-based techniques [1], and thus, we also aim to expand the empirical
study presented in this paper by comparing the data-driven methods with the model-
based methods. Finally, through a user study, we will investigate the usefulness of XAI in
interpreting TTP models.
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